ALTERNATIVE AUTOMOTIVE SECURITY

ALTERNATIVE AUTOMOTIVE SECURITY

Thursday, 27 March 2014

BASIC CONCEPT OF GPS

A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include:
  • the time the message was transmitted and,
  • satellite position at time of message transmission.
The receiver uses the messages it receives to determine the transit time of each message and computes the distance to each satellite using the speed of light. Each of these distances and satellites' locations defines a sphere. The receiver is on the surface of each of these spheres when the distances and the satellites' locations are correct. These distances and satellites' locations are used to compute the location of the receiver using the navigation equations. This location is then displayed, perhaps with a moving map display or latitude and longitude.

Basic GPS measurements yield only a position, and neither speed nor direction. However, most GPS units can automatically derive velocity and direction of movement from two or more position measurements. The disadvantage of this principle is that changes in speed or direction can only be computed with a delay, and that derived direction becomes inaccurate when the distance traveled between two position measurements drops below or near the random error of position measurement. GPS units can use measurements of the doppler shift of the signals received to compute velocity accurately.

Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known, a receiver can determine its position using only three satellites. For example, a ship or aircraft may have known elevation. Some GPS receivers may use additional clues or assumptions such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer, to give a (possibly degraded) position when fewer than four satellites are visible.
 

No comments:

Post a Comment